黄片亚洲一区二区三区,国产精品一久久毛片,亚洲色图激情人妻欧美,成年人午夜免费在线视频

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > 離軸拋物面鏡選擇指南

技術(shù)文章

離軸拋物面鏡選擇指南

技術(shù)文章

Off-Axis Parabolic Mirror Selection Guide

Parabolic mirrors have the ability to focus collimated light without introducing spherical aberration. An Off-Axis Parabolic (OAP) mirror is simply a side section of a parent parabolic mirror. Collimated light that is incident to an OAP mirror is focused to a point. However, unlike a centered parabolic mirror, an OAP mirror has an advantage in that it allows more interactive space around the focal point without disrupting the beam as shown in Figure 1.

Figure 1: Off-Axis Parabolic Metal Mirrors

 

Depending on which section of a parabolic shape an OAP mirror is replicating, the angle between the focal point and the central ray axis can be large or small. Figure 2 represents this phenomena by modeling a 15° and 45° off axis mirror respectively. Note: It is important to keep the incident beam parallel to the optical axis, any angular displacement will produce comatic aberration.

Figure 2: Diagrams of 15° and 45° OAP mirrors

 

Edmund Optics offers three types of off-axis parabolic mirrors: metal, high performance, and low scatter. Table 1 compares the substrate, controlled scattering ability, and price of the three different types.

 

Selection Guide

The following selection guide provides helpful information detailing the strengths and limitations of each OAP type.

Off-Axis Parabolic Metal Mirrors

Metal mirrors are available in 15°, 30°, 45°, 60°, or 90° Off-Axis options. Each of these options comes with a coating choice of Protected Aluminum, Protected Gold, or Bare Gold. These coatings allow great reflectivity across a range of spectral regions. Edmund Optics also offers different diameter selections for each coating and angle. Typically, these mirrors are used as collimators in Schlieren and MTF systems, but gold coated off-axis parabolic mirrors can also be used in FLIR test systems.

Figure 3: Theoretical Reflectance Curves for Metal Mirror

 

Strengths

Limitations

ØAluminum substrate mirrors.

ØAvailable in 15°, 30°, 45°, 60°, or 90° Off-Axis Options

ØAluminum and Gold Coating Options

ØDue to the 175Å surface roughness, these mirrors are not suitable for visible and UV applications that require low scatter

 

High Performance Off-Axis Parabolic Mirrors

Edmund Optics also offers high performance glass substrate off-axis parabolic mirrors with superior surface accuracy for increased focusing ability. Typical applications include use in Czerny-Turner and Littrow spectrometer configurations and in general collimator and beam expander setups. These mirrors work extremely well in the UV to visible light spectrum.

Figure 4: Simulation Result of Aluminum Coating Reflectance between 10,000nm and 20,000nm

 

Strengths

Limitations

ØHigh Quality Glass Substrate

Øλ/4 or λ/2 Surface Accuracy

ØIdeal for UV and Visible Applications

ØTypically longer focal length

ØRequires angled mounting making alignment more challenging

ØGlass substrate is not suitable for terahertz frequency applications

 

Low Scatter Off-Axis Parabolic Mirrors

TECHSPEC® Low Scatter Off-Axis Parabolic Mirrors are designed to direct and focus incident collimated light at a specific angle with minimal scatter loss. By using a specialized manufacturing process, the aluminum substrate low scatter OAP mirrors decrease scatter in the visible spectrum. Each mirror has been visually inspected with a HeNe laser to ensure low scatter.

Figure 5: Typical Scatter Profiles. Left is standard grade OAPM, while right is TECHSPEC® Low Scatter OAPM

 

Strengths

Limitations

ØDesigned for Low Scatter in the Visible Spectrum

ØAluminum Substrate Mirrors

ØImproved Surface Roughness and Surface Figure

ØMust operate in a clean environment

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務(wù)!

版權(quán)所有 © 2024 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |